SVALBARD-H - Available in 1200mm to 3000mm lengths - Adjustable pressure/air flow rate Adjustable flow pattern Dimensioningprogram Auracool H on our website **APPLICATION** Svalbard-H is a hydronic cooling, heating and ventilation system for use in offices, shops, schools etc. The system is designed to provide excellent cooling effect, and a high induction level ensures a draft-free environment in the occupied zone. Svalbard-H is made for corner installation, i.e. between wall and ceiling. ### Design - Nozzle configuration for the chilled beam, i.e. desired air supply and pressure, is specified at time of order. Svalbard-H comes with integrated air flow rate measuring point. - The front panel can be folded down for inspection and cleaning. - Svalbard-H is available in installation lengths of 1200, 1800, 2400 and 3000 mm. - Coil types: SKB = standard cooling coil or VKB heating and cooling coil. - Dispersion type: unidirectional - Connection to air: Ø125 mm (spigot dimension). - Connection to air and water on same side - Connection to water, cooling and heating: Cu Ø15x1.0 mm - Changeable flowpattern via Jet Split lamellaes in the beams outlet. Blind cover can be provided for adaptation to the wall. See Figure 9. **DESCRIPTION** ## **Material and surfaces** Frame and casing in galvanised steel. Delivered in a powdered painted finish (white RAL 9003 - gloss 30) as standard. Copper tube coils with aluminium lamellae. Adjustable lamellae are in a plastic design. **INSTALLATION** ## SVALBARD-H Svalbard-H is supplied with a mounting bar for attachment to wall, and to which the chilled beam is then attached. Detailed installation instructions is to be found on our website: www.trox.no # WATER VALVE The water valve is to be installed on the return (chilled water out), and with the water-valve arrow pointing away from the cooling coil (the various connection options are shown in fig. 8). # **TECHNICAL INFORMATION** Example: Svalbard-H-1800-55-SKB-A-1/0-0-S-0 Explanation: Svalbard-H, corner beam, length 1800 w/ pre-set value 55 and standard cooling coil Connection to air A and water 1. Commissioning damper DRS-K Ø125 supplied separately. Connection to air and water on same side as standard, A-1or B-2. | Δ(, [°C] | | 6 | | 8 | | | | L_dB(A) | | |--|--|--|---|---|---------------------------------------|---|---------------------------------------|--|---| | Total pressure in | duct [Pa] | 40 | 80 | 40 | 80 | 40 | 80 | 40Pa | 80 Pa | | Air flow rate [m³/h] | 40 | 110 | 130 | 150 | 170 | 180 | 210 | 23 | 32 | | | 50 | 120 | 140 | 160 | 190 | 200 | 230 | 27 | 33 | | | 60 | 120 | 150 | 170 | 200 | 210 | 240 | 30 | 35 | | | 70 | 130 | 150 | 180 | 200 | 220 | 250 | 32 | 36 | | | 80 | 140 | 160 | 190 | 210 | 230 | 260 | 34 | 38 | | able 2: Cooli | ing effects a | at 0.06 litres | of water per sec | | | | | | | | Svabard-H-18 | 900 mm | | | | | | | | | | Δ1, [°C] | | | 6 | | 3 | | | | B(A) | | Total pressure in | | 40 | 80 | 40 | 80 | 40 | 80 | 40Pa | 80 Pa | | Air flow rate [m³/h] | 40 | 150 | 160 | 200 | 220 | 240 | 270 | 21 | 29 | | | 60 | 170 | 190 | 220 | 250 | 270 | 310 | 26 | 32 | | | 80 | 180 | 210 | 250 | 290 | 310 | 360 | 29 | 34 | | | 100 | 200 | 230 | 270 | 310 | 330 | 380 | 32 | 37 | | | 120 | 210 | 240 | 280 | 320 | 350 | 400 | 34 | 40 | | vabard-H-24 | 400 mm | | | | | | | | | | | 400 mm | | 6 | | 3 | 1 | 0 | L_d | B(A) | | Δ([°C] | | 40 | 6 80 | 40 | 3 80 | 40 | 0 80 | L_d
40Pa | | | Δζ [°C]
Total pressure in | | 40
200 | | | | | | | | | Δζ [°C]
Total pressure in | duct [Pa] | | 80 | 40 | 80 | 40 | 80 | 40Pa | 80 P | | Δζ [°C]
Total pressure in | duct (Pa) | 200 | 80
230 | 40
270 | 80
300 | 40
340 | 80
370 | 40Pa
22 | 80 P | | or fow rate of the control co | 60
80 | 200
220 | 80
230
250 | 40
270
295 | 80
300
330 | 40
340
370 | 80
370
410 | 40Pa
22
26 | 80 P
29
32 | | Air flow rate [m³/h] | 60
80
100
120
140 | 200
220
240
250
260 | 80
230
250
270
290
300 | 40
270
295
320
335
350 | 80
300
330
360 | 40
340
370
400 | 80
370
410
450 | 40Pa
22
26
29 | 80 P
29
32
35 | | Of [°C] Svabard-H-30 | 60
80
100
120
140
ing effects a | 200
220
240
250
260 | 230
250
270
290
300
of water per sec | 40
270
295
320
335
350 | 80
300
330
360
385
400 | 40
340
370
400
420
440 | 90
370
410
450
480
500 | 40Pa
22
26
29
31
33 | 80 P
29
32
35
37
39 | | AL [°C] Total pressure in OIL 100 [FL] South and H-30 AL [°C] | 60
80
100
120
140
ing effects a | 200
220
240
250
260
at 0.06 litres | 80
230
250
270
290
300
of water per sec | 40
270
295
320
335
350 | 80
300
330
360
385
400 | 40
340
370
400
420
440 | 90
370
410
450
480
500 | 40Pa
22
26
29
31
33 | 80 Pi
29
32
35
37
39 | | Office of the second in se | 60 80 100 120 140 ing effects a | 200
220
240
250
260
at 0.06 litres | 80
230
250
270
290
300
of water per sec | 40
270
295
320
335
350 | 80
300
330
360
385
400 | 40
340
370
400
420
440 | 90
370
410
450
480
500 | 40Pa
22
26
29
31
33 | 80 P:
29
32
35
37
39
(B(A) | | AL [C] | 60 80 100 120 140 ing effects a 000 mm | 200
220
240
250
260
at 0.06 litres | 80
230
250
270
290
300
of water per sec | 40
270
295
320
335
350
350 | 80
300
330
360
385
400 | 40
340
370
400
420
440
1
40
390 | 90
370
410
450
480
500 | 40Pa
22
26
29
31
33
40Pa
21 | 80 Pr
29
32
35
37
39
B(A)
80 Pr
29 | | AL [C] | 60 80 100 120 140 ing effects a 2000 mm | 200
220
240
250
260
at 0.06 litres
40
230
250 | 80
230
250
270
290
300
of water per sec | 40
270
295
320
335
350
3
40
310
340 | 80
300
330
360
385
400 | 40
340
370
400
420
440
1
40
390
430 | 80
370
410
450
480
500 | 40Pa
22
26
29
31
33
40Pa
21
23 | 80 P
29
32
35
37
39
B(A)
80 P
29
31 | | AL [C] | 60 80 100 120 140 ing effects a 0000 mm | 200
220
240
250
260
at 0.06 litres
40
230
250
270 | 80
230
250
270
290
300
of water per sec | 40
270
295
320
335
350
3
40
310
340
370 | 80
300
330
360
385
400 | 40
340
370
400
420
440
1
40
390
430
460 | 80
370
410
450
480
500 | 40Pa
22
26
29
31
33
40Pa
21
23
26 | 80 P
29
32
35
37
39
(B(A)
80 P
29
31
34 | | AL [°C] OIL AND PROMOTE HE SEE AL COOLING AL [°C] | 60 80 100 120 140 ing effects a 2000 mm | 200
220
240
250
260
at 0.06 litres
40
230
250 | 80
230
250
270
290
300
of water per sec | 40
270
295
320
335
350
3
40
310
340 | 80
300
330
360
385
400 | 40
340
370
400
420
440
1
40
390
430 | 80
370
410
450
480
500 | 40Pa
22
26
29
31
33
40Pa
21
23 | 80 P
29
32
35
37
39
B(A)
80 P
29
31 | Air is supplied via nozzles, and indoor air is extracted and fed through the coil. Effective mixing of indoor air and supply air, i.e. induction, minimises the risk of draft in the occupied zone. When Svalbard is utilised for heating, the same technique is used for dispersion of heat along the ceiling. The indoor air is extracted through the perforated area on the unit's front-panel in order to avoid dirt accumulation on the ceiling.